Joint Sensing and Communication Optimization in Target-Mounted STARS-Assisted Vehicular Networks: A MADRL Approach

17 Nov 2023  ·  Haocheng Zhang, Rang Liu, Ming Li, Wei Wang, Qian Liu ·

The utilization of integrated sensing and communication (ISAC) technology has the potential to enhance the communication performance of road side units (RSUs) through the active sensing of target vehicles. Furthermore, installing a simultaneous transmitting and reflecting surface (STARS) on the target vehicle can provide an extra boost to the reflection of the echo signal, thereby improving the communication quality for in-vehicle users. However, the design of this target-mounted STARS system exhibits significant challenges, such as limited information sharing and distributed STARS control. In this paper, we propose an end-to-end multi-agent deep reinforcement learning (MADRL) framework to tackle the challenges of joint sensing and communication optimization in the considered target-mounted STARS assisted vehicle networks. By deploying agents on both RSU and vehicle, the MADRL framework enables RSU and vehicle to perform beam prediction and STARS pre-configuration using their respective local information. To ensure efficient and stable learning for continuous decision-making, we employ the multi-agent soft actor critic (MASAC) algorithm and the multi-agent proximal policy optimization (MAPPO) algorithm on the proposed MADRL framework. Extensive experimental results confirm the effectiveness of our proposed MADRL framework in improving both sensing and communication performance through the utilization of target-mounted STARS. Finally, we conduct a comparative analysis and comparison of the two proposed algorithms under various environmental conditions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods