Joint Parameter and Parameterization Inference with Uncertainty Quantification through Differentiable Programming

4 Mar 2024  ·  Yongquan Qu, Mohamed Aziz Bhouri, Pierre Gentine ·

Accurate representations of unknown and sub-grid physical processes through parameterizations (or closure) in numerical simulations with quantified uncertainty are critical for resolving the coarse-grained partial differential equations that govern many problems ranging from weather and climate prediction to turbulence simulations. Recent advances have seen machine learning (ML) increasingly applied to model these subgrid processes, resulting in the development of hybrid physics-ML models through the integration with numerical solvers. In this work, we introduce a novel framework for the joint estimation of physical parameters and machine learning parameterizations with uncertainty quantification. Our framework incorporates online training and efficient Bayesian inference within a high-dimensional parameter space, facilitated by differentiable programming. This proof of concept underscores the substantial potential of differentiable programming in synergistically combining machine learning with differential equations, thereby enhancing the capabilities of hybrid physics-ML modeling.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here