Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted IoT Data Collection System

27 Oct 2022  ·  Li Dong, Zhibin Liu, Feibo Jiang, Kezhi Wang ·

Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems, e.g., smart farms, as a data collection platform. However, the UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings. An intelligent reflecting surface (IRS) can be applied to improve the wireless channel quality by smartly reflecting the signal via a large number of low-cost passive reflective elements. This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV. The problem is formulated as a mixed-integer-and-nonlinear programming (MINLP), which is challenging to address by the traditional solution, because the solution may easily fall into the local optimal. To address this issue, we propose a joint optimization framework of deployment and trajectory (JOLT), where an adaptive whale optimization algorithm (AWOA) is applied to optimize the deployment of the UAV, and an elastic ring self-organizing map (ERSOM) is introduced to optimize the trajectory of the UAV. Specifically, in AWOA, a variable-length population strategy is applied to find the optimal number of stop points, and a nonlinear parameter a and a partial mutation rule are introduced to balance the exploration and exploitation. In ERSOM, a competitive neural network is also introduced to learn the trajectory of the UAV by competitive learning, and a ring structure is presented to avoid the trajectory intersection. Extensive experiments are carried out to show the effectiveness of the proposed JOLT framework.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here