Joint Majorization-Minimization for Nonnegative Matrix Factorization with the $β$-divergence

29 Jun 2021  ·  Arthur Marmin, José Henrique de Morais Goulart, Cédric Févotte ·

This article proposes new multiplicative updates for nonnegative matrix factorization (NMF) with the $\beta$-divergence objective function. Our new updates are derived from a joint majorization-minimization (MM) scheme, in which an auxiliary function (a tight upper bound of the objective function) is built for the two factors jointly and minimized at each iteration. This is in contrast with the classic approach in which a majorizer is derived for each factor separately. Like that classic approach, our joint MM algorithm also results in multiplicative updates that are simple to implement. They however yield a significant drop of computation time (for equally good solutions), in particular for some $\beta$-divergences of important applicative interest, such as the squared Euclidean distance and the Kullback-Leibler or Itakura-Saito divergences. We report experimental results using diverse datasets: face images, an audio spectrogram, hyperspectral data and song play counts. Depending on the value of $\beta$ and on the dataset, our joint MM approach can yield CPU time reductions from about $13\%$ to $78\%$ in comparison to the classic alternating scheme.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here