Joint Location Sensing and Channel Estimation for IRS-Aided mmWave ISAC Systems

14 Nov 2023  ·  Zijian Chen, Ming-Min Zhao, Min Li, Fan Xu, Qingqing Wu, Min-Jian Zhao ·

In this paper, we investigate a self-sensing intelligent reflecting surface (IRS) aided millimeter wave (mmWave) integrated sensing and communication (ISAC) system. Unlike the conventional purely passive IRS, the self-sensing IRS can effectively reduce the path loss of sensing-related links, thus rendering it advantageous in ISAC systems. Aiming to jointly sense the target/scatterer/user positions as well as estimate the sensing and communication (SAC) channels in the considered system, we propose a two-phase transmission scheme, where the coarse and refined sensing/channel estimation (CE) results are respectively obtained in the first phase (using scanning-based IRS reflection coefficients) and second phase (using optimized IRS reflection coefficients). For each phase, an angle-based sensing turbo variational Bayesian inference (AS-TVBI) algorithm, which combines the VBI, messaging passing and expectation-maximization (EM) methods, is developed to solve the considered joint location sensing and CE problem. The proposed algorithm effectively exploits the partial overlapping structured (POS) sparsity and 2-dimensional (2D) block sparsity inherent in the SAC channels to enhance the overall performance. Based on the estimation results from the first phase, we formulate a Cram\'{e}r-Rao bound (CRB) minimization problem for optimizing IRS reflection coefficients, and through proper reformulations, a low-complexity manifold-based optimization algorithm is proposed to solve this problem. Simulation results are provided to verify the superiority of the proposed transmission scheme and associated algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods