Investigating the prompt leakage effect and black-box defenses for multi-turn LLM interactions

Prompt leakage in large language models (LLMs) poses a significant security and privacy threat, particularly in retrieval-augmented generation (RAG) systems. However, leakage in multi-turn LLM interactions along with mitigation strategies has not been studied in a standardized manner. This paper investigates LLM vulnerabilities against prompt leakage across 4 diverse domains and 10 closed- and open-source LLMs. Our unique multi-turn threat model leverages the LLM's sycophancy effect and our analysis dissects task instruction and knowledge leakage in the LLM response. In a multi-turn setting, our threat model elevates the average attack success rate (ASR) to 86.2%, including a 99% leakage with GPT-4 and claude-1.3. We find that some black-box LLMs like Gemini show variable susceptibility to leakage across domains - they are more likely to leak contextual knowledge in the news domain compared to the medical domain. Our experiments measure specific effects of 6 black-box defense strategies, including a query-rewriter in the RAG scenario. Our proposed multi-tier combination of defenses still has an ASR of 5.3% for black-box LLMs, indicating room for enhancement and future direction for LLM security research.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods