Intrinsic Characterization of Dynamic Surfaces

CVPR 2013  ·  Tony Tung, Takashi Matsuyama ·

This paper presents a novel approach to characterize deformable surface using intrinsic property dynamics. 3D dynamic surfaces representing humans in motion can be obtained using multiple view stereo reconstruction methods or depth cameras. Nowadays these technologies have become capable to capture surface variations in real-time, and give details such as clothing wrinkles and deformations. Assuming repetitive patterns in the deformations, we propose to model complex surface variations using sets of linear dynamical systems (LDS) where observations across time are given by surface intrinsic properties such as local curvatures. We introduce an approach based on bags of dynamical systems, where each surface feature to be represented in the codebook is modeled by a set of LDS equipped with timing structure. Experiments are performed on datasets of real-world dynamical surfaces and show compelling results for description, classification and segmentation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here