Beyond Training Objectives: Interpreting Reward Model Divergence in Large Language Models

12 Oct 2023  ·  Luke Marks, Amir Abdullah, Clement Neo, Rauno Arike, Philip Torr, Fazl Barez ·

Large language models (LLMs) fine-tuned by reinforcement learning from human feedback (RLHF) are becoming more widely deployed. We coin the term $\textit{Implicit Reward Model}$ (IRM) to refer to the changes that occur to an LLM during RLHF that result in high-reward generations. We interpret IRMs, and measure their divergence from the RLHF reward model used in the fine-tuning process that induced them. By fitting a linear function to an LLM's IRM, a reward model with the same type signature as the RLHF reward model is constructed, allowing for direct comparison. Additionally, we validate our construction of the IRM through cross-comparison with classifications of features generated by an LLM based on their relevance to the RLHF reward model. Better comprehending IRMs can help minimize discrepencies between LLM behavior and training objectives, which we believe to be an essential component of the $\textit{safety}$ and $\textit{alignment}$ of LLMs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods