Interpretable Convolutional Neural Networks via Feedforward Design

5 Oct 2018  ·  C. -C. Jay Kuo, Min Zhang, Siyang Li, Jiali Duan, Yueru Chen ·

The model parameters of convolutional neural networks (CNNs) are determined by backpropagation (BP). In this work, we propose an interpretable feedforward (FF) design without any BP as a reference. The FF design adopts a data-centric approach. It derives network parameters of the current layer based on data statistics from the output of the previous layer in a one-pass manner. To construct convolutional layers, we develop a new signal transform, called the Saab (Subspace Approximation with Adjusted Bias) transform. It is a variant of the principal component analysis (PCA) with an added bias vector to annihilate activation's nonlinearity. Multiple Saab transforms in cascade yield multiple convolutional layers. As to fully-connected (FC) layers, we construct them using a cascade of multi-stage linear least squared regressors (LSRs). The classification and robustness (against adversarial attacks) performances of BP- and FF-designed CNNs applied to the MNIST and the CIFAR-10 datasets are compared. Finally, we comment on the relationship between BP and FF designs.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here