Integral Continual Learning Along the Tangent Vector Field of Tasks

23 Nov 2022  ·  Tian Yu Liu, Aditya Golatkar, Stefano Soatto, Alessandro Achille ·

We propose a lightweight continual learning method which incorporates information from specialized datasets incrementally, by integrating it along the vector field of "generalist" models. The tangent plane to the specialist model acts as a generalist guide and avoids the kind of over-fitting that leads to catastrophic forgetting, while exploiting the convexity of the optimization landscape in the tangent plane. It maintains a small fixed-size memory buffer, as low as 0.4% of the source datasets, which is updated by simple resampling. Our method achieves strong performance across various buffer sizes for different datasets. Specifically, in the class-incremental setting we outperform the existing methods that do not require distillation by an average of 18.77% and 28.48%, for Seq-CIFAR-10 and Seq-TinyImageNet respectively. Our method can easily be used in conjunction with existing replay-based continual learning methods. When memory buffer constraints are relaxed to allow storage of metadata such as logits, we attain an error reduction of 17.84% towards the paragon performance on Seq-CIFAR-10.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here