Instance-dependent Label-noise Learning under a Structural Causal Model

Label noise will degenerate the performance of deep learning algorithms because deep neural networks easily overfit label errors. Let X and Y denote the instance and clean label, respectively. When Y is a cause of X, according to which many datasets have been constructed, e.g., SVHN and CIFAR, the distributions of P(X) and P(Y|X) are entangled. This means that the unsupervised instances are helpful to learn the classifier and thus reduce the side effect of label noise. However, it remains elusive on how to exploit the causal information to handle the label noise problem. In this paper, by leveraging a structural causal model, we propose a novel generative approach for instance-dependent label-noise learning. In particular, we show that properly modeling the instances will contribute to the identifiability of the label noise transition matrix and thus lead to a better classifier. Empirically, our method outperforms all state-of-the-art methods on both synthetic and real-world label-noise datasets.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here