Innovated scalable efficient estimation in ultra-large Gaussian graphical models

11 May 2016  ·  Yingying Fan, Jinchi Lv ·

Large-scale precision matrix estimation is of fundamental importance yet challenging in many contemporary applications for recovering Gaussian graphical models. In this paper, we suggest a new approach of innovated scalable efficient estimation (ISEE) for estimating large precision matrix. Motivated by the innovated transformation, we convert the original problem into that of large covariance matrix estimation. The suggested method combines the strengths of recent advances in high-dimensional sparse modeling and large covariance matrix estimation. Compared to existing approaches, our method is scalable and can deal with much larger precision matrices with simple tuning. Under mild regularity conditions, we establish that this procedure can recover the underlying graphical structure with significant probability and provide efficient estimation of link strengths. Both computational and theoretical advantages of the procedure are evidenced through simulation and real data examples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here