InfoVAEGAN : learning joint interpretable representations by information maximization and maximum likelihood

9 Jul 2021  ·  Fei Ye, Adrian G. Bors ·

Learning disentangled and interpretable representations is an important step towards accomplishing comprehensive data representations on the manifold. In this paper, we propose a novel representation learning algorithm which combines the inference abilities of Variational Autoencoders (VAE) with the generalization capability of Generative Adversarial Networks (GAN). The proposed model, called InfoVAEGAN, consists of three networks~: Encoder, Generator and Discriminator. InfoVAEGAN aims to jointly learn discrete and continuous interpretable representations in an unsupervised manner by using two different data-free log-likelihood functions onto the variables sampled from the generator's distribution. We propose a two-stage algorithm for optimizing the inference network separately from the generator training. Moreover, we enforce the learning of interpretable representations through the maximization of the mutual information between the existing latent variables and those created through generative and inference processes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here