Information Theory Unification of Epidemiological and Population Dynamics

26 Feb 2024  ·  Baptiste Filoche, Stefan Hohenegger, Francesco Sannino ·

We reformulate models in epidemiology and population dynamics in terms of probability distributions. This allows us to construct the Fisher information, which we interpret as the metric of a one-dimensional differentiable manifold. For systems that can be effectively described by a single degree of freedom, we show that their time evolution is fully captured by this metric. In this way, we discover universal features across seemingly very different models. This further motivates a reorganisation of the dynamics around zeroes of the Fisher metric, corresponding to extrema of the probability distribution. Concretely, we propose a simple form of the metric for which we can analytically solve the dynamics of the system that well approximates the time evolution of various established models in epidemiology and population dynamics, thus providing a unifying framework.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here