Paper

Information-theoretical label embeddings for large-scale image classification

We present a method for training multi-label, massively multi-class image classification models, that is faster and more accurate than supervision via a sigmoid cross-entropy loss (logistic regression). Our method consists in embedding high-dimensional sparse labels onto a lower-dimensional dense sphere of unit-normed vectors, and treating the classification problem as a cosine proximity regression problem on this sphere. We test our method on a dataset of 300 million high-resolution images with 17,000 labels, where it yields considerably faster convergence, as well as a 7% higher mean average precision compared to logistic regression.

Results in Papers With Code
(↓ scroll down to see all results)