Information Theoretic Model Predictive Q-Learning

31 Dec 2019  ·  Mohak Bhardwaj, Ankur Handa, Dieter Fox, Byron Boots ·

Model-free Reinforcement Learning (RL) works well when experience can be collected cheaply and model-based RL is effective when system dynamics can be modeled accurately. However, both assumptions can be violated in real world problems such as robotics, where querying the system can be expensive and real-world dynamics can be difficult to model. In contrast to RL, Model Predictive Control (MPC) algorithms use a simulator to optimize a simple policy class online, constructing a closed-loop controller that can effectively contend with real-world dynamics. MPC performance is usually limited by factors such as model bias and the limited horizon of optimization. In this work, we present a novel theoretical connection between information theoretic MPC and entropy regularized RL and develop a Q-learning algorithm that can leverage biased models. We validate the proposed algorithm on sim-to-sim control tasks to demonstrate the improvements over optimal control and reinforcement learning from scratch. Our approach paves the way for deploying reinforcement learning algorithms on real systems in a systematic manner.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods