Information decomposition reveals hidden high-order contributions to temporal irreversibility

Temporal irreversibility, often referred to as the arrow of time, is a fundamental concept in statistical mechanics. Markers of irreversibility also provide a powerful characterisation of information processing in biological systems. However, current approaches tend to describe temporal irreversibility in terms of a single scalar quantity, without disentangling the underlying dynamics that contribute to irreversibility. Here we propose a broadly applicable information-theoretic framework to characterise the arrow of time in multivariate time series, which yields qualitatively different types of irreversible information dynamics. This multidimensional characterisation reveals previously unreported high-order modes of irreversibility, and establishes a formal connection between recent heuristic markers of temporal irreversibility and metrics of information processing. We demonstrate the prevalence of high-order irreversibility in the hyperactive regime of a biophysical model of brain dynamics, showing that our framework is both theoretically principled and empirically useful. This work challenges the view of the arrow of time as a monolithic entity, enhancing both our theoretical understanding of irreversibility and our ability to detect it in practical applications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here