Inferring the Graph of Networked Dynamical Systems under Partial Observability and Spatially Colored Noise

18 Dec 2023  ·  Augusto Santos, Diogo Rente, Rui Seabra, José M. F. Moura ·

In a Networked Dynamical System (NDS), each node is a system whose dynamics are coupled with the dynamics of neighboring nodes. The global dynamics naturally builds on this network of couplings and it is often excited by a noise input with nontrivial structure. The underlying network is unknown in many applications and should be inferred from observed data. We assume: i) Partial observability -- time series data is only available over a subset of the nodes; ii) Input noise -- it is correlated across distinct nodes while temporally independent, i.e., it is spatially colored. We present a feasibility condition on the noise correlation structure wherein there exists a consistent network inference estimator to recover the underlying fundamental dependencies among the observed nodes. Further, we describe a structure identification algorithm that exhibits competitive performance across distinct regimes of network connectivity, observability, and noise correlation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here