Inferring, Predicting, and Denoising Causal Wave Dynamics

The novel DISTributed Artificial neural Network Architecture (DISTANA) is a generative, recurrent graph convolution neural network. It implements a grid or mesh of locally parameterizable laterally connected network modules. DISTANA is specifically designed to identify the causality behind spatially distributed, non-linear dynamical processes. We show that DISTANA is very well-suited to denoise data streams, given that re-occurring patterns are observed, significantly outperforming alternative approaches, such as temporal convolution networks and ConvLSTMs, on a complex spatial wave propagation benchmark. It produces stable and accurate closed-loop predictions even over hundreds of time steps. Moreover, it is able to effectively filter noise -- an ability that can be improved further by applying denoising autoencoder principles or by actively tuning latent neural state activities retrospectively. Results confirm that DISTANA is ready to model real-world spatio-temporal dynamics such as brain imaging, supply networks, water flow, or soil and weather data patterns.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods