Inference Suboptimality in Variational Autoencoders

ICML 2018  ·  Chris Cremer, Xuechen Li, David Duvenaud ·

Amortized inference allows latent-variable models trained via variational learning to scale to large datasets. The quality of approximate inference is determined by two factors: a) the capacity of the variational distribution to match the true posterior and b) the ability of the recognition network to produce good variational parameters for each datapoint. We examine approximate inference in variational autoencoders in terms of these factors. We find that divergence from the true posterior is often due to imperfect recognition networks, rather than the limited complexity of the approximating distribution. We show that this is due partly to the generator learning to accommodate the choice of approximation. Furthermore, we show that the parameters used to increase the expressiveness of the approximation play a role in generalizing inference rather than simply improving the complexity of the approximation.

PDF Abstract ICML 2018 PDF ICML 2018 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here