Inference in Non-stationary High-Dimensional VARs

2 Feb 2023  ·  Alain Hecq, Luca Margaritella, Stephan Smeekes ·

In this paper we construct an inferential procedure for Granger causality in high-dimensional non-stationary vector autoregressive (VAR) models. Our method does not require knowledge of the order of integration of the time series under consideration. We augment the VAR with at least as many lags as the suspected maximum order of integration, an approach which has been proven to be robust against the presence of unit roots in low dimensions. We prove that we can restrict the augmentation to only the variables of interest for the testing, thereby making the approach suitable for high dimensions. We combine this lag augmentation with a post-double-selection procedure in which a set of initial penalized regressions is performed to select the relevant variables for both the Granger causing and caused variables. We then establish uniform asymptotic normality of a second-stage regression involving only the selected variables. Finite sample simulations show good performance, an application to investigate the (predictive) causes and effects of economic uncertainty illustrates the need to allow for unknown orders of integration.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here