Incorporating BERT into Parallel Sequence Decoding with Adapters

While large scale pre-trained language models such as BERT have achieved great success on various natural language understanding tasks, how to efficiently and effectively incorporate them into sequence-to-sequence models and the corresponding text generation tasks remains a non-trivial problem. In this paper, we propose to address this problem by taking two different BERT models as the encoder and decoder respectively, and fine-tuning them by introducing simple and lightweight adapter modules, which are inserted between BERT layers and tuned on the task-specific dataset... (read more)

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper