Improvising the Learning of Neural Networks on Hyperspherical Manifold

29 Sep 2021  ·  Lalith Bharadwaj Baru, Sai Vardhan Kanumolu, Akshay Patel Shilhora, Madhu G ·

The impact of convolution neural networks (CNNs) in the supervised settings provided tremendous increment in performance. The representations learned from CNN's operated on hyperspherical manifold led to insightful outcomes in face recognition, face identification, and other supervised tasks. A broad range of activation functions were developed with hypersphere intuition which performs superior to softmax in euclidean space. The main motive of this research is to provide insights. First, the stereographic projection is implied to transform data from Euclidean space ($\mathbb{R}^{n}$) to hyperspherical manifold ($\mathbb{S}^{n}$) to analyze the performance of angular margin losses. Secondly, proving theoretically and practically that decision boundaries constructed on hypersphere using stereographic projection obliges the learning of neural networks. Experiments have demonstrated that applying stereographic projection on existing state-of-the-art angular margin objective functions improved performance for standard image classification data sets (CIFAR-10,100). Further, we ran our experiments on malaria-thin blood smear images, resulting in effective outcomes. The code is publicly available at:https://github.com/barulalithb/stereo-angular-margin.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods