Improving Transferability of Adversarial Examples via Bayesian Attacks

21 Jul 2023  ·  Qizhang Li, Yiwen Guo, Xiaochen Yang, WangMeng Zuo, Hao Chen ·

This paper presents a substantial extension of our work published at ICLR. Our ICLR work advocated for enhancing transferability in adversarial examples by incorporating a Bayesian formulation into model parameters, which effectively emulates the ensemble of infinitely many deep neural networks, while, in this paper, we introduce a novel extension by incorporating the Bayesian formulation into the model input as well, enabling the joint diversification of both the model input and model parameters. Our empirical findings demonstrate that: 1) the combination of Bayesian formulations for both the model input and model parameters yields significant improvements in transferability; 2) by introducing advanced approximations of the posterior distribution over the model input, adversarial transferability achieves further enhancement, surpassing all state-of-the-arts when attacking without model fine-tuning. Moreover, we propose a principled approach to fine-tune model parameters in such an extended Bayesian formulation. The derived optimization objective inherently encourages flat minima in the parameter space and input space. Extensive experiments demonstrate that our method achieves a new state-of-the-art on transfer-based attacks, improving the average success rate on ImageNet and CIFAR-10 by 19.14% and 2.08%, respectively, when comparing with our ICLR basic Bayesian method. We will make our code publicly available.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here