Improving Semantic Segmentation via Dilated Affinity

16 Jul 2019  ·  Boxi Wu, Shuai Zhao, Wenqing Chu, Zheng Yang, Deng Cai ·

Introducing explicit constraints on the structural predictions has been an effective way to improve the performance of semantic segmentation models. Existing methods are mainly based on insufficient hand-crafted rules that only partially capture the image structure, and some methods can also suffer from the efficiency issue. As a result, most of the state-of-the-art fully convolutional networks did not adopt these techniques. In this work, we propose a simple, fast yet effective method that exploits structural information through direct supervision with minor additional expense. To be specific, our method explicitly requires the network to predict semantic segmentation as well as dilated affinity, which is a sparse version of pair-wise pixel affinity. The capability of telling the relationships between pixels are directly built into the model and enhance the quality of segmentation in two stages. 1) Joint training with dilated affinity can provide robust feature representations and thus lead to finer segmentation results. 2) The extra output of affinity information can be further utilized to refine the original segmentation with a fast propagation process. Consistent improvements are observed on various benchmark datasets when applying our framework to the existing state-of-the-art model. Codes will be released soon.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here