Improving Autoregressive NLP Tasks via Modular Linearized Attention

17 Apr 2023  ·  Victor Agostinelli, Lizhong Chen ·

Various natural language processing (NLP) tasks necessitate models that are efficient and small based on their ultimate application at the edge or in other resource-constrained environments. While prior research has reduced the size of these models, increasing computational efficiency without considerable performance impacts remains difficult, especially for autoregressive tasks. This paper proposes modular linearized attention (MLA), which combines multiple efficient attention mechanisms, including cosFormer, to maximize inference quality while achieving notable speedups. We validate this approach on several autoregressive NLP tasks, including speech-to-text neural machine translation (S2T NMT), speech-to-text simultaneous translation (SimulST), and autoregressive text-to-spectrogram, noting efficiency gains on TTS and competitive performance for NMT and SimulST during training and inference.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here