Improved SVD-based Initialization for Nonnegative Matrix Factorization using Low-Rank Correction

11 Jul 2018  ·  Atif Muhammad Syed, Sameer Qazi, Nicolas Gillis ·

Due to the iterative nature of most nonnegative matrix factorization (\textsc{NMF}) algorithms, initialization is a key aspect as it significantly influences both the convergence and the final solution obtained. Many initialization schemes have been proposed for NMF, among which one of the most popular class of methods are based on the singular value decomposition (SVD). However, these SVD-based initializations do not satisfy a rather natural condition, namely that the error should decrease as the rank of factorization increases. In this paper, we propose a novel SVD-based \textsc{NMF} initialization to specifically address this shortcoming by taking into account the SVD factors that were discarded to obtain a nonnegative initialization. This method, referred to as nonnegative SVD with low-rank correction (NNSVD-LRC), allows us to significantly reduce the initial error at a negligible additional computational cost using the low-rank structure of the discarded SVD factors. NNSVD-LRC has two other advantages compared to previous SVD-based initializations: (1) it provably generates sparse initial factors, and (2) it is faster as it only requires to compute a truncated SVD of rank $\lceil r/2 + 1 \rceil$ where $r$ is the factorization rank of the sought NMF decomposition (as opposed to a rank-$r$ truncated SVD for other methods). We show on several standard dense and sparse data sets that our new method competes favorably with state-of-the-art SVD-based initializations for NMF.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here