Improved Convergence Rates of Windowed Anderson Acceleration for Symmetric Fixed-Point Iterations

4 Nov 2023  ·  Casey Garner, Gilad Lerman, Teng Zhang ·

This paper studies the commonly utilized windowed Anderson acceleration (AA) algorithm for fixed-point methods, $x^{(k+1)}=q(x^{(k)})$. It provides the first proof that when the operator $q$ is linear and symmetric the windowed AA, which uses a sliding window of prior iterates, improves the root-linear convergence factor over the fixed-point iterations. When $q$ is nonlinear, yet has a symmetric Jacobian at a fixed point, a slightly modified AA algorithm is proved to have an analogous root-linear convergence factor improvement over fixed-point iterations. Simulations verify our observations. Furthermore, experiments with different data models demonstrate AA is significantly superior to the standard fixed-point methods for Tyler's M-estimation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here