Importance sampling for option pricing with feedforward neural networks

28 Dec 2021  ·  Aleksandar Arandjelović, Thorsten Rheinländer, Pavel V. Shevchenko ·

We study the problem of reducing the variance of Monte Carlo estimators through performing suitable changes of the sampling measure which are induced by feedforward neural networks. To this end, building on the concept of vector stochastic integration, we characterize the Cameron-Martin spaces of a large class of Gaussian measures which are induced by vector-valued continuous local martingales with deterministic covariation. We prove that feedforward neural networks enjoy, up to an isometry, the universal approximation property in these topological spaces. We then prove that sampling measures which are generated by feedforward neural networks can approximate the optimal sampling measure arbitrarily well. We conclude with a comprehensive numerical study pricing path-dependent European options for asset price models that incorporate factors such as changing business activity, knock-out barriers, dynamic correlations, and high-dimensional baskets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here