HyperPower: Power- and Memory-Constrained Hyper-Parameter Optimization for Neural Networks

While selecting the hyper-parameters of Neural Networks (NNs) has been so far treated as an art, the emergence of more complex, deeper architectures poses increasingly more challenges to designers and Machine Learning (ML) practitioners, especially when power and memory constraints need to be considered. In this work, we propose HyperPower, a framework that enables efficient Bayesian optimization and random search in the context of power- and memory-constrained hyper-parameter optimization for NNs running on a given hardware platform... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Random Search
Hyperparameter Search