Hypergraph Optimization for Multi-structural Geometric Model Fitting

13 Feb 2020  ·  Shuyuan Lin, Guobao Xiao, Yan Yan, David Suter, Hanzi Wang ·

Recently, some hypergraph-based methods have been proposed to deal with the problem of model fitting in computer vision, mainly due to the superior capability of hypergraph to represent the complex relationship between data points. However, a hypergraph becomes extremely complicated when the input data include a large number of data points (usually contaminated with noises and outliers), which will significantly increase the computational burden. In order to overcome the above problem, we propose a novel hypergraph optimization based model fitting (HOMF) method to construct a simple but effective hypergraph. Specifically, HOMF includes two main parts: an adaptive inlier estimation algorithm for vertex optimization and an iterative hyperedge optimization algorithm for hyperedge optimization. The proposed method is highly efficient, and it can obtain accurate model fitting results within a few iterations. Moreover, HOMF can then directly apply spectral clustering, to achieve good fitting performance. Extensive experimental results show that HOMF outperforms several state-of-the-art model fitting methods on both synthetic data and real images, especially in sampling efficiency and in handling data with severe outliers.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here