Hyperbolic Distance-Based Speech Separation

7 Jan 2024  ·  Darius Petermann, Minje Kim ·

In this work, we explore the task of hierarchical distance-based speech separation defined on a hyperbolic manifold. Based on the recent advent of audio-related tasks performed in non-Euclidean spaces, we propose to make use of the Poincar\'e ball to effectively unveil the inherent hierarchical structure found in complex speaker mixtures. We design two sets of experiments in which the distance-based parent sound classes, namely "near" and "far", can contain up to two or three speakers (i.e., children) each. We show that our hyperbolic approach is suitable for unveiling hierarchical structure from the problem definition, resulting in improved child-level separation. We further show that a clear correlation emerges between the notion of hyperbolic certainty (i.e., the distance to the ball's origin) and acoustic semantics such as speaker density, inter-source location, and microphone-to-speaker distance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here