HybridDNN: A Framework for High-Performance Hybrid DNN Accelerator Design and Implementation

8 Apr 2020  ·  Hanchen Ye, Xiaofan Zhang, Zhize Huang, Gengsheng Chen, Deming Chen ·

To speedup Deep Neural Networks (DNN) accelerator design and enable effective implementation, we propose HybridDNN, a framework for building high-performance hybrid DNN accelerators and delivering FPGA-based hardware implementations. Novel techniques include a highly flexible and scalable architecture with a hybrid Spatial/Winograd convolution (CONV) Processing Engine (PE), a comprehensive design space exploration tool, and a complete design flow to fully support accelerator design and implementation. Experimental results show that the accelerators generated by HybridDNN can deliver 3375.7 and 83.3 GOPS on a high-end FPGA (VU9P) and an embedded FPGA (PYNQ-Z1), respectively, which achieve a 1.8x higher performance improvement compared to the state-of-art accelerator designs. This demonstrates that HybridDNN is flexible and scalable and can target both cloud and embedded hardware platforms with vastly different resource constraints.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods