Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax Problems

NeurIPS 2020  ·  Quoc Tran-Dinh, Deyi Liu, Lam M. Nguyen ·

We develop a novel and single-loop variance-reduced algorithm to solve a class of stochastic nonconvex-convex minimax problems involving a nonconvex-linear objective function, which has various applications in different fields such as machine learning and robust optimization. This problem class has several computational challenges due to its nonsmoothness, nonconvexity, nonlinearity, and non-separability of the objective functions. Our approach relies on a new combination of recent ideas, including smoothing and hybrid biased variance-reduced techniques. Our algorithm and its variants can achieve $\mathcal{O}(T^{-2/3})$-convergence rate and the best known oracle complexity under standard assumptions, where $T$ is the iteration counter. They have several computational advantages compared to existing methods such as simple to implement and less parameter tuning requirements. They can also work with both single sample or mini-batch on derivative estimators, and with constant or diminishing step-sizes. We demonstrate the benefits of our algorithms over existing methods through two numerical examples, including a nonsmooth and nonconvex-non-strongly concave minimax model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here