Sequential Recommender via Time-aware Attentive Memory Network

Recommendation systems aim to assist users to discover most preferred contents from an ever-growing corpus of items. Although recommenders have been greatly improved by deep learning, they still faces several challenges: (1) Behaviors are much more complex than words in sentences, so traditional attentive and recurrent models may fail in capturing the temporal dynamics of user preferences... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

Memory Network
Working Memory Models
Recurrent Neural Networks