Hybrid Attentional Memory Network for Computational drug repositioning

12 Jun 2020 Jieyue He Xinxing Yang Zhuo Gong lbrahim Zamit

Drug repositioning is designed to discover new uses of known drugs, which is an important and efficient method of drug discovery. Researchers only use one certain type of Collaborative Filtering (CF) models for drug repositioning currently, like the neighborhood based approaches which are good at mining the local information contained in few strong drug-disease associations, or the latent factor based models which are effectively capture the global information shared by a majority of drug-disease associations... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

Generative Models
Memory Network
Working Memory Models