Human Motor Learning Dynamics in High-dimensional Tasks

20 Apr 2024  ·  Ankur Kamboj, Rajiv Ranganathan, Xiaobo Tan, Vaibhav Srivastava ·

Conventional approaches to enhancing movement coordination, such as providing instructions and visual feedback, are often inadequate in complex motor tasks with multiple degrees of freedom (DoFs). To effectively address coordination deficits in such complex motor systems, it becomes imperative to develop interventions grounded in a model of human motor learning; however, modeling such learning processes is challenging due to the large DoFs. In this paper, we present a computational motor learning model that leverages the concept of motor synergies to extract low-dimensional learning representations in the high-dimensional motor space and the internal model theory of motor control to capture both fast and slow motor learning processes. We establish the model's convergence properties and validate it using data from a target capture game played by human participants. We study the influence of model parameters on several motor learning trade-offs such as speed-accuracy, exploration-exploitation, satisficing, and flexibility-performance, and show that the human motor learning system tunes these parameters to optimize learning and various output performance metrics.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here