Human and Machine Intelligence in n-Person Games with Partial Knowledge: Theory and Computation

27 Feb 2023  ·  Mehmet S. Ismail ·

In this paper, I formalize intelligence measurement in games by introducing mechanisms that assign a real number -- interpreted as an intelligence score -- to each player in a game. This score quantifies the ex-post strategic ability of the players based on empirically observable information, such as the actions of the players, the game's outcome, strength of the players, and a reference oracle machine such as a chess-playing artificial intelligence system. Specifically, I introduce two main concepts: first, the Game Intelligence (GI) mechanism, which quantifies a player's intelligence in a game by considering not only the game's outcome but also the "mistakes" made during the game according to the reference machine's intelligence. Second, I define gamingproofness, a practical and computational concept of strategyproofness. To illustrate the GI mechanism, I apply it to an extensive dataset comprising over a billion chess moves, including over a million moves made by top 20 grandmasters in history. Notably, Magnus Carlsen emerges with the highest GI score among all world championship games included in the dataset. In machine-vs-machine games, the well-known chess engine Stockfish comes out on top.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here