Paper

HPN: Personalized Federated Hyperparameter Optimization

Numerous research studies in the field of federated learning (FL) have attempted to use personalization to address the heterogeneity among clients, one of FL's most crucial and challenging problems. However, existing works predominantly focus on tailoring models. Yet, due to the heterogeneity of clients, they may each require different choices of hyperparameters, which have not been studied so far. We pinpoint two challenges of personalized federated hyperparameter optimization (pFedHPO): handling the exponentially increased search space and characterizing each client without compromising its data privacy. To overcome them, we propose learning a \textsc{H}yper\textsc{P}arameter \textsc{N}etwork (HPN) fed with client encoding to decide personalized hyperparameters. The client encoding is calculated with a random projection-based procedure to protect each client's privacy. Besides, we design a novel mechanism to debias the low-fidelity function evaluation samples for learning HPN. We conduct extensive experiments on FL tasks from various domains, demonstrating the superiority of HPN.

Results in Papers With Code
(↓ scroll down to see all results)