How To Extract Fashion Trends From Social Media? A Robust Object Detector With Support For Unsupervised Learning

28 Jun 2018  ·  Vijay Gabale, Anand Prabhu Subramanian ·

With the proliferation of social media, fashion inspired from celebrities, reputed designers as well as fashion influencers has shortened the cycle of fashion design and manufacturing. However, with the explosion of fashion related content and large number of user generated fashion photos, it is an arduous task for fashion designers to wade through social media photos and create a digest of trending fashion. This necessitates deep parsing of fashion photos on social media to localize and classify multiple fashion items from a given fashion photo. While object detection competitions such as MSCOCO have thousands of samples for each of the object categories, it is quite difficult to get large labeled datasets for fast fashion items. Moreover, state-of-the-art object detectors do not have any functionality to ingest large amount of unlabeled data available on social media in order to fine tune object detectors with labeled datasets. In this work, we show application of a generic object detector, that can be pretrained in an unsupervised manner, on 24 categories from recently released Open Images V4 dataset. We first train the base architecture of the object detector using unsupervisd learning on 60K unlabeled photos from 24 categories gathered from social media, and then subsequently fine tune it on 8.2K labeled photos from Open Images V4 dataset. On 300 X 300 image inputs, we achieve 72.7% mAP on a test dataset of 2.4K photos while performing 11% to 17% better as compared to the state-of-the-art object detectors. We show that this improvement is due to our choice of architecture that lets us do unsupervised learning and that performs significantly better in identifying small objects.

PDF Abstract

Datasets


Results from the Paper


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Object Detection SUN-RGBD val CDSSD MAP 7 # 1

Methods


No methods listed for this paper. Add relevant methods here