HomoGenius: a Foundation Model of Homogenization for Rapid Prediction of Effective Mechanical Properties using Neural Operators

18 Mar 2024  ·  Yizheng Wang, Xiang Li, Ziming Yan, Yuqing Du, Jinshuai Bai, Bokai Liu, Timon Rabczuk, Yinghua Liu ·

Homogenization is an essential tool for studying multiscale physical phenomena. However, traditional numerical homogenization, heavily reliant on finite element analysis, requires extensive computation costs, particularly in handling complex geometries, materials, and high-resolution problems. To address these limitations, we propose a numerical homogenization model based on operator learning: HomoGenius. The proposed model can quickly provide homogenization results for arbitrary geometries, materials, and resolutions, increasing the efficiency by a factor of 80 compared to traditional numerical homogenization methods. We validate effectiveness of our model in predicting the effective elastic modulus on periodic materials (TPMS: Triply Periodic Minimal Surface), including complex geometries, various Poisson's ratios and elastic modulus, and different resolutions for training and testing. The results show that our model possesses high precision, super efficiency, and learning capability.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here