Hindsight-DICE: Stable Credit Assignment for Deep Reinforcement Learning

21 Jul 2023  ·  Akash Velu, Skanda Vaidyanath, Dilip Arumugam ·

Oftentimes, environments for sequential decision-making problems can be quite sparse in the provision of evaluative feedback to guide reinforcement-learning agents. In the extreme case, long trajectories of behavior are merely punctuated with a single terminal feedback signal, leading to a significant temporal delay between the observation of a non-trivial reward and the individual steps of behavior culpable for achieving said reward. Coping with such a credit assignment challenge is one of the hallmark characteristics of reinforcement learning. While prior work has introduced the concept of hindsight policies to develop a theoretically moxtivated method for reweighting on-policy data by impact on achieving the observed trajectory return, we show that these methods experience instabilities which lead to inefficient learning in complex environments. In this work, we adapt existing importance-sampling ratio estimation techniques for off-policy evaluation to drastically improve the stability and efficiency of these so-called hindsight policy methods. Our hindsight distribution correction facilitates stable, efficient learning across a broad range of environments where credit assignment plagues baseline methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here