Higher-Order Expander Graph Propagation

14 Nov 2023  ·  Thomas Christie, Yu He ·

Graph neural networks operate on graph-structured data via exchanging messages along edges. One limitation of this message passing paradigm is the over-squashing problem. Over-squashing occurs when messages from a node's expanded receptive field are compressed into fixed-size vectors, potentially causing information loss. To address this issue, recent works have explored using expander graphs, which are highly-connected sparse graphs with low diameters, to perform message passing. However, current methods on expander graph propagation only consider pair-wise interactions, ignoring higher-order structures in complex data. To explore the benefits of capturing these higher-order correlations while still leveraging expander graphs, we introduce higher-order expander graph propagation. We propose two methods for constructing bipartite expanders and evaluate their performance on both synthetic and real-world datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here