Hierarchical Perception Adversarial Learning Framework for Compressed Sensing MRI

27 Jan 2023  ·  Zhifan Gao, Yifeng Guo, Jiajing Zhang, Tieyong Zeng, Guang Yang ·

The long acquisition time has limited the accessibility of magnetic resonance imaging (MRI) because it leads to patient discomfort and motion artifacts. Although several MRI techniques have been proposed to reduce the acquisition time, compressed sensing in magnetic resonance imaging (CS-MRI) enables fast acquisition without compromising SNR and resolution. However, existing CS-MRI methods suffer from the challenge of aliasing artifacts. This challenge results in the noise-like textures and missing the fine details, thus leading to unsatisfactory reconstruction performance. To tackle this challenge, we propose a hierarchical perception adversarial learning framework (HP-ALF). HP-ALF can perceive the image information in the hierarchical mechanism: image-level perception and patch-level perception. The former can reduce the visual perception difference in the entire image, and thus achieve aliasing artifact removal. The latter can reduce this difference in the regions of the image, and thus recover fine details. Specifically, HP-ALF achieves the hierarchical mechanism by utilizing multilevel perspective discrimination. This discrimination can provide the information from two perspectives (overall and regional) for adversarial learning. It also utilizes a global and local coherent discriminator to provide structure information to the generator during training. In addition, HP-ALF contains a context-aware learning block to effectively exploit the slice information between individual images for better reconstruction performance. The experiments validated on three datasets demonstrate the effectiveness of HP-ALF and its superiority to the comparative methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here