Hierarchical Hidden Markov Jump Processes for Cancer Screening Modeling

13 Oct 2019  ·  Rui Meng, Soper Braden, Jan Nygard, Mari Nygrad, Herbert Lee ·

Hidden Markov jump processes are an attractive approach for modeling clinical disease progression data because they are explainable and capable of handling both irregularly sampled and noisy data. Most applications in this context consider time-homogeneous models due to their relative computational simplicity. However, the time homogeneous assumption is too strong to accurately model the natural history of many diseases. Moreover, the population at risk is not homogeneous either, since disease exposure and susceptibility can vary considerably. In this paper, we propose a piece-wise stationary transition matrix to explain the heterogeneity in time. We propose a hierarchical structure for the heterogeneity in population, where prior information is considered to deal with unbalanced data. Moreover, an efficient, scalable EM algorithm is proposed for inference. We demonstrate the feasibility and superiority of our model on a cervical cancer screening dataset from the Cancer Registry of Norway. Experiments show that our model outperforms state-of-the-art recurrent neural network models in terms of prediction accuracy and significantly outperforms a standard hidden Markov jump process in generating Kaplan-Meier estimators.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here