Hierarchical binary CNNs for landmark localization with limited resources

14 Aug 2018 Adrian Bulat Georgios Tzimiropoulos

Our goal is to design architectures that retain the groundbreaking performance of Convolutional Neural Networks (CNNs) for landmark localization and at the same time are lightweight, compact and suitable for applications with limited computational resources. To this end, we make the following contributions: (a) we are the first to study the effect of neural network binarization on localization tasks, namely human pose estimation and face alignment... (read more)

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet