Hierarchical Approaches for Reinforcement Learning in Parameterized Action Space

23 Oct 2018  ·  Ermo Wei, Drew Wicke, Sean Luke ·

We explore Deep Reinforcement Learning in a parameterized action space. Specifically, we investigate how to achieve sample-efficient end-to-end training in these tasks. We propose a new compact architecture for the tasks where the parameter policy is conditioned on the output of the discrete action policy. We also propose two new methods based on the state-of-the-art algorithms Trust Region Policy Optimization (TRPO) and Stochastic Value Gradient (SVG) to train such an architecture. We demonstrate that these methods outperform the state of the art method, Parameterized Action DDPG, on test domains.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods