Heterogeneous Multilayer Generalized Operational Perceptron

13 Apr 2018  ·  Dat Thanh Tran, Serkan Kiranyaz, Moncef Gabbouj, Alexandros Iosifidis ·

The traditional Multilayer Perceptron (MLP) using McCulloch-Pitts neuron model is inherently limited to a set of neuronal activities, i.e., linear weighted sum followed by nonlinear thresholding step. Previously, Generalized Operational Perceptron (GOP) was proposed to extend conventional perceptron model by defining a diverse set of neuronal activities to imitate a generalized model of biological neurons. Together with GOP, Progressive Operational Perceptron (POP) algorithm was proposed to optimize a pre-defined template of multiple homogeneous layers in a layerwise manner. In this paper, we propose an efficient algorithm to learn a compact, fully heterogeneous multilayer network that allows each individual neuron, regardless of the layer, to have distinct characteristics. Based on the complexity of the problem, the proposed algorithm operates in a progressive manner on a neuronal level, searching for a compact topology, not only in terms of depth but also width, i.e., the number of neurons in each layer. The proposed algorithm is shown to outperform other related learning methods in extensive experiments on several classification problems.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here