Harnessing Data and Physics for Deep Learning Phase Recovery

1 Apr 2024  ·  Kaiqiang Wang, Edmund Y. Lam ·

Phase recovery, calculating the phase of a light wave from its intensity measurements, is essential for various applications, such as coherent diffraction imaging, adaptive optics, and biomedical imaging. It enables the reconstruction of an object's refractive index distribution or topography as well as the correction of imaging system aberrations. In recent years, deep learning has been proven to be highly effective in addressing phase recovery problems. Two main deep learning phase recovery strategies are data-driven (DD) with supervised learning mode and physics-driven (PD) with self-supervised learning mode. DD and PD achieve the same goal in different ways and lack the necessary study to reveal similarities and differences. Therefore, in this paper, we comprehensively compare these two deep learning phase recovery strategies in terms of time consumption, accuracy, generalization ability, ill-posedness adaptability, and prior capacity. What's more, we propose a co-driven (CD) strategy of combining datasets and physics for the balance of high- and low-frequency information. The codes for DD, PD, and CD are publicly available at https://github.com/kqwang/DLPR.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here