Harmless interpolation of noisy data in regression

21 Mar 2019  ·  Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, Anant Sahai ·

A continuing mystery in understanding the empirical success of deep neural networks is their ability to achieve zero training error and generalize well, even when the training data is noisy and there are more parameters than data points. We investigate this overparameterized regime in linear regression, where all solutions that minimize training error interpolate the data, including noise. We characterize the fundamental generalization (mean-squared) error of any interpolating solution in the presence of noise, and show that this error decays to zero with the number of features. Thus, overparameterization can be explicitly beneficial in ensuring harmless interpolation of noise. We discuss two root causes for poor generalization that are complementary in nature -- signal "bleeding" into a large number of alias features, and overfitting of noise by parsimonious feature selectors. For the sparse linear model with noise, we provide a hybrid interpolating scheme that mitigates both these issues and achieves order-optimal MSE over all possible interpolating solutions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here